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In this paper, we propose a stochastic cellular automaton model of traffic flow extending two exactly
solvable stochastic models, i.e., the asymmetric simple exclusion process and the zero range process. More-
over, it is regarded as a stochastic extension of the optimal velocity model. In the fundamental diagram
�flux-density diagram�, our model exhibits several regions of density where more than one stable state coexists
at the same density in spite of the stochastic nature of its dynamical rule. Moreover, we observe that two
long-lived metastable states appear for a transitional period, and that the dynamical phase transition from a
metastable state to another metastable/stable state occurs sharply and spontaneously.

DOI: 10.1103/PhysRevE.72.035102 PACS number�s�: 05.60.�k, 05.45.�a, 05.70.Jk, 89.40.�a

Traffic dynamics has been attracting much attention from
physicists, engineers and mathematicians as a typical ex-
ample of nonequilibrium statistical mechanics of self-driven
many-particle systems for the last decade �1–3�. Statistical
properties of traffic phenomena are studied empirically by
using the fundamental diagram, which displays the relation
of the flux �the average velocity of vehicles multiplied by the
density of them� to the density. We have found that an emer-
gence of more than one different flux at the same density in
the transit region from free to congested phase is almost
universal in real traffic �4�. Recent experimental studies also
show that the phase transition occurs discontinuously against
the density and structurally complex states appear around the
critical density �5–7�.

While traffic models with many parameters and complex
rules may reproduce empirical data, a strong mathematical
support, if any, allows a direct connection between micro-
scopic modeling and the universal feature extracted from
various traffic flows. In this paper, we therefore propose a
cellular automaton �CA� model extending two significant
stochastic processes, i.e., the asymmetric simple exclusion
process �ASEP� and the zero range process �ZRP� as de-
scribed later. Moreover, we find that our model is supported
by a successful traffic model, the optimal velocity (OV)
model �8,9�. The OV model, which is a continuous and de-
terministic model, is expressed by coupled differential equa-
tions; d2xi /dt2=a�V�xi+1−xi�−dxi /dt�, where xi=xi�t� is the
position of the ith vehicle at time t and the function V is
called the optimal velocity function, which gives the optimal
speed of a vehicle according to its headway xi+1−xi �the ith
vehicle follows the �i+1�th in the same lane�. The intrinsic
parameter a indicates the driver’s sensitivity to traffic situa-
tions and governs the stability of flow. Our stochatic CA
model is, however, different from a noisy OV model �10� as
described below.

First of all, we explain the general framework of our sto-
chastic CA model for one-lane traffic. N vehicles are moving

on a single-lane road which is divided into a one-
dimensional array of L sites. Each site contains one vehicle
at most, and collision and overtaking are thus prohibited �the
so-called hard-core exclusion rule�. In this paper, parallel
updating is adopted, i.e., all the vehicles attempt to move at
each step. We introduce a probability distribution function
wi

t�m� which gives the probability, or the driver’s intention,
of the ith vehicle hopping m �m=0,1 ,2 ,…� sites ahead at
time t. Then assuming that the next intention wi

t+1�m� is de-
termined by a function f i depending on wi

t�0� ,wi
t�1� ,… and

the positions x1
t ,x2

t ,… ,xN
t , the configuration of vehicles is

recursively updated according to the following procedure:
• For each vehicle, calculate the next intention to hop m

sites with the configuration x1
t ,x2

t ,… ,xN
t and the intention

wi
t�0� ,wi

t�1� ,…,

wi
t+1�m� = f i„wi

t�0�,wi
t�1�,…;x1

t ,…,xN
t ;m… . �1�

• Determine the number of sites Vi
t+1 at which a vehicle

moves �i.e., the velocity� probabilistically according to the
intention wi

t+1. In other words, the probability of Vi
t+1=m is

equal to wi
t+1�m�.

• Each vehicle moves avoiding a collision,

xi
t+1 = xi

t + min��xi
t,Vi

t+1� , �2�

where �xi
t=xi+1

t −xi
t−1 defines the headway, and the vehicles

thus move at either Vi
t+1 or �xi

t sites. If Vi
t+1��xi

t, a vehicle
must stop at the cell xi+1

t −1.
In what follows, we assume that the maximum allowed

velocity is equal to 1, i.e., if m�2, wi
t�m�=0. Then, putting

vi
t�wi

t�1� �accordingly wi
t�0�=1−vi

t�, we propose a special
type of f i in Eq. �1� as

vi
t+1 = �1 − ai�vi

t + aiVi��xi
t� �∀t � 0, ∀ i� , �3�

where ai�0�ai�1� is a parameter and the function Vi is
restricted to values in the interval �0, 1� so that vi

t also should
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be within �0, 1�. The intrinsic parameter ai, a weighting fac-
tor of the optimal velocity Vi��xi

t� to the intention wi
t+1, cor-

responds to the driver’s sensitivity to a traffic condition. As
long as the vehicles move separately, we can also rewrite Eq.
�2� simply as xi

t+1=xi
t+1 with probability vi

t+1. �Note that the
original OV model does not support the hard-core exclusion
�8,9�.� Therefore, vi

t can be regarded as the average velocity,
i.e., �xi

t+1�= �xi
t�+vi

t+1 in the sense of expectation values. We
call the model expressed by Eq. �3� the stochastic optimal
velocity (SOV) model because of its formal similarity to a
discrete version of the OV model �or a coupled map lattice
�11��

xi
t+1 = xi

t + vi
t+1�t , �4�

vi
t+1 = �1 − a�t�vi

t + �a�t�V��xi
t� , �5�

where �t is a time interval and the OV model is recovered in
the limit �t→0. In this special case where the maximum
allowed velocity equals 1, we thus have an obvious corre-
spondence of our stochastic CA model to an existent traffic
model. As a matter of convenience, we set ai=a and Vi=V
�∀i� hereafter.

From the viewpoint of mathematical interest, the SOV
model includes two significant stochastic models. When
a=0, Eq. �3� becomes vi

t+1=vi
t, i.e., the model reduces to

ASEP �12–15� with a constant hopping probability p�vi
0.

When a=1, Eq. �3� becomes vi
t+1=V ��xi

t�, i.e., the model
reduces to ZRP �16� considering the headways ��xi

t	 as the
stochastic variables of ZRP. In ZRP, the hopping probability
of a vehicle is determined exclusively by its present head-
way. Figure 1 illustrates the two stochastic models schemati-
cally. ASEP and ZRP are both known to be exactly solvable
in the sense that the probability distribution of the configu-
ration of vehicles in the stationary state can be exactly cal-
culated �17,18�, and thus our model admits an exact calcula-
tion of the fundamental diagram in the special cases.

In order to investigate a phenomenological feature, we
take a realistic form of the OV function as

V�x� =
tanh�x − c� + tanh c

1 + tanh c
, �6�

which was investigated in Ref. �8�. We find that the funda-
mental diagrams simulated with Eq. �6� have a quantitative
agreement with the exact calculation of ZRP �a=1� up to
a
0.6. In contrast, the fundamental diagram of the SOV
model does not come closer to that of ASEP as a approaches
0, although the SOV model coincides with ASEP at a=0.
Figure 2 shows that a curve similar to the diagram of ASEP

appears only for the first few steps �t=10� and then changes
the shape rapidly �t=100, 1000�. Surprisingly, when the dia-
gram becomes stationary, it allows a discontinuous point and
two overlapping stable states around the density �
0.14
�t=10 000�.

Let us study the discontinuity of the flux in detail. Figure
3 shows the fundamental diagram expanded around the dis-
continuous point. We have three distinct branches and then

FIG. 1. Schematic view of the tagged-particle model for ASEP
�a� and ZRP �b�. The hopping probability of a particle depends on
the gap size in front of it in ZRP, while it is always constant in
ASEP. In both cases, hopping to an occupied cell is prohibited.

FIG. 2. The fundamental diagram of the SOV model with the
OV function �6� �c=1.5 and a=0.01� plotted at each time stage t,
starting from uniform/random states with p��vi

0�=0.5, including
the exact curve �gray� of ASEP for comparison �13�. The system
size is L=1000.

FIG. 3. �a� The expanded fundamental diagram of the SOV
model with a=0.01 at t=1000 �gray� and t=5000 �black� starting
from two typical states; the uniform state with equal spacing of
vehicles and p��vi

0�=1, and the random state with random spacing
and p=1. We observe three distinct branches, which we call the
free-flow, congested, and jam branch. They survive even in the
stationary state, which is plotted at t=50 000 in �b�. �b� The station-
ary states �black� and the averaged three branches �gray lines� are
plotted at t=50 000. The vertical dotted lines distinguish the regions
of density from S1 to B2. The arrows in T2 indicate the trace of a
metastable free-flow state decaying to the lower branches. �see also
Fig. 4�.
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call them as follows: free-flow phase �vehicles move without
interactions�, congested phase �a mixture of small clusters
and free vehicles�, and jam phase �one big stable jam trans-
mitting backward�. These branches appear in the fundamen-
tal diagram, respectively, as a segment of line with slope
1�free flow�, as a thick curve with a slight positive slope
�congested�, and as a thick line with a negative slope �jam�.
Note that the congested and jam lines show some fluctua-
tions due to a randomness of the SOV model. Figure 3�a�
shows snapshots of the flux at t=1000 and 5000. There exists
midstream flux between free-flow and congested phases at
t=1000, and between congested and jam phases at t=5000.
This suggests that the high-density free-flow states can hold
until t=1000 but not until t=5000, and that the high-density
congested states have already started to decay into jam states
before t=5000. We have thereby revealed the existence of
two metastable branches leading out of the free-flow or con-
gested lines. Comparing Fig. 3�a� with Fig. 3�b�, we have six
qualitatively distinct regions of density �Fig. 3�b��; free re-
gion S1 �including only free-flow phase�, bistable region B1
�including free-flow and congested phases, which are both
stable�, tristable region T1 �including all the three phases,
which are all stable�, tristable region T2 �including free-flow,
congested and jam phases. The former two phases are stable
and the last one is metastable�, bistable region B2 �including
congested and jam phases. The former is metastable, and the
latter is stable�, and jam region S2 �including only stable jam
phase, which is not displayed here�. We stress that the
tristable region T1 is a novel and remarkable characteristic of
many-particle systems, and that the successive phase transi-
tions from a free-flow state to a jam state via a congested
state occur, respectively, on a short time scale.

Let us study the dynamical phase transition especially at
the density �=0.14, indicated by successive arrows in Fig.
3�b�. Figure 4 �upper� shows the flux plotted against time. It
is striking that there appear three plateaus which, respec-

tively, correspond to a free-flow state, a congested state, and
a jam state, and that the flux changes sharply from one pla-
teau to another. In other words, the metastable states have a
remarkably long lifetime before undergoing a sudden phase
transition. Stochastic models, in general, are not anticipated
to have such long-lived metastable states because stochastic
fluctuations break a stability of states very soon �7�. Figure 4
�lower� shows the spatio-temporal diagram corresponding to
the dynamical phase transition. Starting from a free-flow
state, the uniform configuration stochastically breaks down
at time t
5000, and then the free-flow state is rapidly re-
placed by a congested state where a lot of clusters are form-
ing and dissolving, moving forward and backward. Figure 5
shows the distribution of headways at several time stages.
We find that the distribution of headways changes signifi-
cantly after each phase transition. In particular, the ratio of
vehicles with null headway increases. As for a congested
state, it is meaningful to evaluate the average size of clusters
from a distribution of headways. If the ratio of the vehicles
with null headway is b0, the average cluster size � can be
evaluated as 1/ �1−b0�. In the present case, the average size
of clusters is about 1.2–1.4 during t=6000–12 000.

We also have some remarks, from a microscopic view-
point, on a single cluster: Since the sensitivity parameter a is
set to a small value, the intention vi

t does not change a lot
before the vehicle catches up with the tail of a cluster �i.e.,
vi

t
1�. Accordingly, the aggregation rate � is roughly esti-
mated at the density of free region behind the cluster;
�
�1−b0��. In the present case, the aggregation rate aver-
aged over the whole clusters of a congested state is 0.10–
0.12. For the same reason, we can estimate the average ve-
locity of the front vehicle of a cluster at �1−a��/�, where �
denotes the dissolution rate and � /� indicates the duration of
capture. Since � is also equivalent to the average velocity of
the front vehicle, it amounts roughly to 1−a� after all. In the
present case, the dissolution rate averaged over the whole
clusters of a congested state is 0.86–0.88. Then, the average
lifetime of the clusters � / ��−�� is estimated at 1.54–1.89.
The above estimations are appropriate only when clusters are
small and spaced apart. As many clusters arise everywhere
and gather, a vehicle out of a cluster tends to be caught in

FIG. 4. The time evolution of flux at the density �=0.14 starting
from the uniform state. We observe two plateaus at the flux
Q=0.14 with a lifetime T�5000, and Q�0.08 with T�7000 be-
fore reaching the stationary jam state �upper�. The lower figure
shows the corresponding spatio-temporal diagram, where vehicles
�black dots� move from bottom up. �Note that the periodic boundary
condition is imposed.�

FIG. 5. The distribution of the headways with which the ve-
hicles move at each time stage t. It changes a lot after phase tran-
sitions �t
5000, 12 000�. The traffic states, free flow �t	5000�,
congested �5000	 t	12000�, and jam �t�12000�, respectively,
show their specific pictures.
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another cluster again before it recovers its intention at full
value. Consequently, the clusters arising nearby reduce their
dissolution rates, and finally grow into a jam moving steadily
backward. The steady transmitting velocity �the aggregation
rate� is estimated at −0.055, coinciding with Fig. 4.

In this paper, beginning with a general scheme, we have
proposed a stochastic CA model to which we introduce a
probability distribution function of the vehicle’s velocity. It
includes two exactly solvable stochastic processes, and it is
also regarded as a stochastic generalization of the OV model.
Moreover, it exhibits the following features: In spite of a
stochastic model, the fundamental diagram shows that there
coexist two or three stable phases �free-flow, congested, and
jam� in a region of density. As the density increases, the

free-flow and congested states lose stability and change into
metastable states which can be observed only for a transi-
tional period. Moreover, the dynamical phase transition from
a metastable state to another metastable/stable state, which is
triggered by stochastic perturbation, occurs sharply and
spontaneously. We consider that the metastable state may be
relevant to the transient congested state observed in the up-
stream of on ramp �5,19�. Such a dynamical phase transition
has not been observed in previous works �8–10� or among
existent many-particle systems. Further studies, e.g., on an-
other choice of the OV function, under open boundary con-
ditions, and on the general �i.e., multi-velocity� version will
be given in subsequent publications �20�.
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